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We consider the stability of the Couette flow between two rotating cylinders in the limit- 
ing case when the radius of the inner cylinder rl tends to zero, and its angular velocity 
52, increases to infinity in such a manner that 81r12 = k, = const. 

The dependence of the critical Reynolds number R, on the wave number a is repre- 
sented by a neutral curve. The Couette flow loses its stability when the Reynolds num- 

ber becomes supercritical and a = 3. The eigenvector of the liiearized problem is 

computed and used to construct an approximate Taylor vortex. 

1. Statement of the problem. A viscous incompressible fluid of unit den- 
sity and coefficient of viscosity v fills the space between two concentric cylinders of 

radii r, and r’2 rotating with angular velocities Jzl and 522. Letting r, tend to zero and 

Q1 to infinity in such a manner that Qlr12 = kc,, we arrive at the limiting flow created 

by a vortex line of intensity Fc, distributed along the axis of the cylinder whose radius is 

rz. Below we study the stablity of this flow. 
In Sect. 2 we show that the problem will indeed reach its limiting value when rX + 0. 

We shall require that there is no loss of fluid across the transverse section. Then the 
exact solution v, of the Navier-Stokes equations satisfying the no-slip conditions at the 

boundaries represents a Couette flow 

Uor = uoz = 0, vgo = ar + I/ r, a=k,/k,-- 1, Ii, = R,r,S (1.1) 

where P, 8 and z denote the cylindrical coordinated. 
We shall investigate the stability of the flow (1.1) towards rotationally symmetric 

perturbations 2n / a-periodic in 5. Let us represent the perturbed flow by 

V’ (r, 2, t) = vo(r) + eat v(r, 2) W) 

Inserting (1.2) into the Navier-Stokes equations and neglecting the quadratic terms, 
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we obtain the familiar first approximation equations for small perturbations 

(1.3) 

The functions v,., cs and u, must be Zn 1 u-periodic in z and vanish when r = 1. 
We should also have v, = vs = 0 and v, < 00 when r = 0. 

Let us assume that a < 0 and that the “principle of alteration of stability” holds. 

We note that the latter principle has not, so far, been proved, although experiments cor- 

roborate it. As we know, under these assumptions the lowest value of the Reynolds num- 
ber R for which the solution of the boundary value problem (1.3) with CJ = 0 is non- 
trivial, represents the critical Reynolds number R, 

We seek the solution of (1.3) with (3 = 0 in the form 

v (r, 2) = vi (7-) eiaz (1.4) 

Inserting (1.4) into (1.3) and eliminating the pressure as well as the perturbation of 
the axial velocity, we obtain the following ordinary differential equations : 

(L - ayvl, = 20~ R o (r) vie, (L - a") ule = 2aRv1r (1.5) 

together with the boundary conditions 

v,, = vre = u at r = 0, 1 

at r=O, dvlr -=: 
dr 

0 at r=l 

(1.6) 

(l-7) 

The critical Reynolds number R, is the smallest positive eigenvalue of the problem 

(1.5)-(1.7). We now reduce this problem to an integral equation. 
Let us denote by Gfsa (r, p) h G t e reen’s function for the differential operator 

(L - &) with the boundary conditions u (0) = u (1) = 0 and by Gi,a(r, p) the 

Green’s function for the operator (L - CZ~)~ with the boundary conditions 

U (0) = U (1) = U’ (1) = 0, ZJ' (0) < 00 
From the relations (1.5)-(1.7) we have 

1 

vlr = 2&R 5 Gi, a (r, P) 0 (P) VIB (P) &J 
0 

vu, =hR \ G,“, a (r, p) vu- (p) 4~ 
0 

Elimination of r+, yields 

v1r = h s’ G, a (r, P) v1r (P) dp f A (VP) 
0 

(1.8) 

(1.9) 

(1.10) 
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== a\Gi,.(r, s) Gf,.(s, p)o(s)ds (‘Ont*) 
6 

Thus we reduced the problem of determining K to obtaining the eigenvalues of the 
integral equation (1.10). 

2. Paasage to the limit as rt+O.WeshallshowthatthenumberR,repre- 
sents the limiting value of the critical Reynolds numbers R, (rr) as rl -+ (J-When the 
gap between the cylinders is finite (rl > 0) we obtain, in a similar manner, the follow- 
ing equations for R, (rl) : 

(2.1) 

Gab-, P) = ai6,,,(r, ~)Gl,~(s, P) odds 

Utilizing the expression for I$~,, and G2,a given in [l] we can show, that for any 
prescribed 6 > 0 and a sufficiently small r1 

1~(i~,~(r, s)--G~,~ (r, s)I<6, I.sG2,,(r,s)--Gi,,(r, s)j<S 

Therefore as 1’r -+ 0 , we have 

IllaxO+ pgI / pGx (r, p) -- G, r (r, p) / - 0 \ P 

which means that the operator A,, tends to the operator A defined by (1.10) in the sense 
that iI A,, - A Ilcdc --f 0 when rl + 0 

We therefore conclude that the eigenvalues of (1.10) are obtainable by a limiting 
process from the eigenvalues of Eq. (Z.l)(p] Sect. 78). 

3. The Green.8 functionr Gi,,(r, p), andGi,,(r, 2). Let us consider the 
differential operator 

(L - a2)2u = f (3.1) 
with boundary conditions 

u (0) = u (1) = u ’ (1) = 0, U’ (0) < co (3.2) 

We shall write this operator in the form [31 

(3.3) 

p. = ~2 (A WY, p1 = rP1(ar) 

Lemma 3.1. The Green’s function Gi*, (r, s) for the boundary value problem 
(3.1) and (3.2) is oscillatory. 

Proof of this fact is based on the results of ([4], ch. 3) and the validity of the follow- 
ing lemma. 

Lemma 3.2. The solution of problem (3. l), (3.2) has no more sign changes in 

the interval (0, 1) than does the function f (F). 

Let us assume the opposite. Let f (r) change sign n times and u (r), (n -f- 1) 
times in the interval (0, 1). Since conditions (3.2) hold, the function u (r) has (n + 3) 
zeros on the segment [O, 11. By the generalized Rolle’s theorem, the function 
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a+= Pl& P,U 

has (n + 2) zeros on (0, 1). But conditions (3.2) and p1 (0) = 0 imply that 

Ul (1) = u1 (0) = 0 

Therefore z+ (r) has (n f 4) zeros on [0, 11. Using now the generalized Rolle’s 
theorem we find that the function 

changes sign (n + 4) times on (0, 1) which leads to a contradiction since ~LJ (r) E f (r). 

Let us now write down the function 

-G”a(r’ ‘)= i 

s[~l(ar)l~I(a)l [K,(as)I,(a)- ~l(~VI(~)l (r<ss) 

s[ll(as)/Il(a)][K,(UF)I,(U)--~(U)I,(clr)] (I.>s) 

which was shown in [3] to be oscillatory. The Green’s function G.& (r, S) has the form 

GO,, a (r, s) = 
( 

[I1 (ar) 91(s) - Kl (ar) $2 (s) - fG’ (0) $2 (r) 92 (91 s (r G s) 

111 (as) $1 (r) - Kl (as) $2 (r) - G1 (0) $2 (r) $2 (s)l s (r a s) 

wnere 

91 (s) = - Al 6) K, (cd + &3 (s) 1, (a s) 

92(s) = f% @) 11 (N - A2 (s) Kl (a) 

.1, 
Al(s) =: ~Kl(ar)Il(ar)rdr, A2 (s) = jl12(ar)rdt, AZ(s) = i II-I"(~~T) r& 

s s s 

When o (r) > 0 (0 < r ,< 1) and a < 0, the kernel G& (r, p) , being a com- 
bination of oscillatroy kernels [4], is itself oscillatory. This means that in accordance 

with the results of [4] there exists a sequence of simple positive eigenvalues 

0 .( h, < 3Lg < . . . < A, 

for the operator A (Q) which is defined by (1.10). 

4. Numerical re~ulf:. The eigenvalues of (1.10) can be obtained using the 
_.._ 

R I 
following scheme of successive approximations 

11 
I 

- ?. (n 1) = 
M 

Go,, z cr.7 P) “n.@) (P) drd:,] 
-1 

(4.1) 
60 

Since the kernel G.& (I^, p,) is oscillatory and satis- 
fies the positive-eigenvalue theorem [S], sequences 

10 
4 H 

(4.1) and (4.2) converge to the smallest eigenvalue 
of (1.10) and to the corresponding eigenfunction, 

Fig. 1 respectively. 
Computing the critical number R* tor various a 

we obtain, in the case when the outer cylinder is at rest (Q2 = O), the neutral curve 
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shown in Fig. 1. computations were performed on the “Minsk-la” digital computer up 

to three or four significant figures in the value of R,. The value of the wavenumber 
a, corresponding to min, R, (a) falls between a = 3 and a = 3.5. 

The method given in f1] was used to calculate the first eigenvalue in the spectrum 

of stability of the Couette 
flow for a = 3 at the super- 

critical Reynolds numbers 
R = R, +19, and it was found 

Fig. 2 Fig. 3 

It follows that when R becomes supercritical, the Couette flow loses its stability. 
When (I = 0 , the eigenvector of linearized problem (1.3) and the first term of the para- 
metric expansion of the secondary flow, i.e. the Taylor vortex which appears when the 
Couette flow loses stability, coincide to within the constant multiplier. We computed 
this eigenvector in order to construct the approximate Taylor vortex shown on Fig. 2. 

Its ZQ,. component and &,were obtained from the scheme (4.1) and (4,2), its vIB com- 
ponent was found from (1.9) and for ult we obtain 

Table 1 gives the results obtained. Fig. 3 depicts the dependence of the critical num- 
bers R, (a,) = min, I?* (a) (with a “N 3) on the quantity d = (ra - rr)/ r,. For d = l/Z 

and cr! = 1/a the values for R, (a,) were taken from TJ and 61, for d =: 0.12 from the 

data obtained by G. Taylor (quoted in e. g. [7]) and for d = i , from the present paper. 

0.0625 1.6463 
0.1250 2.9759 
0.1875 3.9019 
0.2566 4.4435 
0.3125 4.6421 
0.3750 4.5553 
0.4375 4.2472 
0.5060 3.7809 
0.5625 3.2103 
0.6250 2.5884 
0.6875 1.9583 
0.7569 2 .3590 
0.8125 0.8268 
0.8750 0.3972 
0.9375 0.1073 

- 

I 
Y- 

vle V 
12 

0.8760 --16.910 
1.6768 -13.973 
2.3460 -10.835 
2.8495 -7.. 8635 
3.1725 -5.1998 
3.3167 -2.9429 
3.2962 --z .1269 
3.1336 0.2927 
2.8566 1.3181 
2.4953 1.9971 
2.0796 2.3646 
1.6374 2.4475 
1.1931 2.2607 
0.7656 2.8047 
0.?67$) 1.0629 

Table 1 
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The kinetic equations for various fractions of the dispersed phase of a polydisperse sus- 
pension and the system of dynamic equations defining the motion of the suspension as 

a set of interpenetrating continua are formulated. It is assumed that the suspension is 
“collisionless”, i.e. that its particles interact largely by way of the random velocity and 

pressure fields in the dispersion medium. The relations characterizing the structure of 
the random pulsations of the suspension phases (“pseudoturbulence”) are considered with- 

out allowance for the derivatives of the dynamic variables describing the mean motion. 

This makes it possible to obtain the dynamic equations in an approximation analogous 

to the Euler approximation in the hydrome~hanics of single-phase media. The equations 
of pseudo-turbulent particle energy transfer which close the system of dynamic equations 
are written out in the same approximation. 

A hydrodynamic model of a polydisperse suspension which adequately describes its 
mechanical behavior in the continuum approximation can be constructed by a natural 
generalization of the method already applied to a monodisperse suspension (e. g. see 
p]). To avoid repetition, many of the concepts discussed in detail in the case of a 
monodisperse suspension are used here without further explanation. For clarity we begin 
with the case where the disperse phase can be represented as a collection of a finite set 
of fractions. The results thus obtained are then extended to suspensions with continuous 


